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Abstract

A numerical study has been performed to investigate the characteristics of bubble growth on, and detachment
from, an ori®ce. The FlowLab code, which is based on a lattice-Boltzmann model of two-phase ¯ows, was

employed. Macroscopic properties, such as surface tension �s� and contact angle �b), were implemented through the
¯uid±¯uid �Gs� and ¯uid±solid �Gt� interaction potentials. The model was found to possess a linear relation between
the macroscopic properties �s, b� and microscopic parameters �Gs, Gt). The separate e�ects of the body force

(gravity), gas injection rate, surface tension, and wettability were analyzed for both horizontal and vertical surfaces.
It is shown that results of the lattice-Boltzmann modeling exhibit correct parametric dependencies of the departure
diameter of bubbles generated on the horizontal surface on the above factors as previously established in

experiments. For the case of bubble growth and departure on the vertical surface, the di�erent e�ects of
hydrodynamic parameters, except gas generation rate, were predicted. 7 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Bubble dispersions in liquids play an important role
in the development of various contacting devices used
in power and chemical engineering industries. Bubble

dispersions are most commonly produced by blowing a
gas into a liquid through either perforated plates or
nozzle grids. To enable description of the bubble dis-

persion phenomena, it is instructive to understand the
underlying physical mechanisms that govern the
bubble formation on a single ori®ce or nozzle. This
has been a topic of numerous experimental studies

conducted at normal gravity. Theoretical models were
also developed to explain results from experiments in
which gas was injected into both viscous and inviscid

¯uids. All of these models presume buoyancy to be the

primary factor that ultimately causes the bubbles to

detach themselves.

Under normal conditions, there are three known

bubbling regimes at a submerged plate ori®ce. These

are the static, the turbulent, and the dynamic regimes

[1]. The static regime occurs at very low gas ¯ow rates

when both inertial and viscous forces may be over-

looked. In the static regime, the moment of detach-

ment, and the ®nal bubble volume, are determined by

a limiting equilibrium con®guration of the gas cavity

based on the ori®ce rim. This limiting con®guration is

established under the combined action of surface ten-

sion and gravity forces. Bubble detachment volume in

this static regime is independent of gas ¯ow rate,

whereas bubble detachment frequency is proportional

to gas ¯ow rate [2,3].

The turbulent regime, in contrast, occurs at very
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high ¯ow rates when successively emerged bubbles

coalesce close to the ori®ce, and after that they dis-

integrate into smaller bubbles of varying sizes and

irregular shapes and hence participate in a vigorous

swirling motion. Such bubbles cannot certainly be

treated as separate independent entities, and this

explains why there is seemingly no reliable model of

the turbulent boiling regime [4].

The dynamic regime is characteristic of systems

using an intermediate range of gas ¯ow rates, that

is, ¯ow rates which are most often used in indus-

trial applications. This range extends as high as gas

¯ow rates of the order of 104 cm3/s for air±water

systems [5]. The main feature of the dynamic regime is

that its bubbles may be considered more or less inde-

pendent of one another. Of course, the concept of a

single growing bubble in this regime is somewhat of an

idealization, since distinction must be made between

di�erent subregimes, such as those of single and

double bubbling, single and double pairing and

delayed release (see e.g., Ref. [1] for a comprehensive

review). Bubble evolution is governed by the inertial,

viscous, surface tension and buoyancy forces. Except

for cases when gas is injected into highly viscous New-

tonian and non-Newtonian liquids, viscous forces hap-

pen to be small in comparison to the inertial and

buoyancy forces. For the dynamic regime, the liquid

may e�ectively be regarded as inviscid, as in many

practical situations.

Numerous experimental and theoretical studies

have been performed on the bubble formation and

detachment on the horizontal surface. Almost all

existing models of bubble growth and detachment in

gas-injected systems, including the pioneering works

[6±8] and the two-stage model developed later in

[5], assume that a growing bubble remains spherical

throughout the entire period of its evolution and at

detachment, the ¯uid (liquid), ideally, wets the solid

materials. Though these models correlated well with

experimental observations, con®rming the plausibility

of the basic assumptions, the small variation range

of experimental parameters, e.g., normal gravity and

ideal wetting characteristics of ¯uid±solid contact,

limit the applications of these models, especially, for

cases with low gravity and for ¯uids of di�erent

wettability.

Very few studies have been reported regarding the

single bubble behavior on the vertical surface. In

particular, the interaction between bubbles makes

the experimental measurement di�cult, and the ir-

regular shape of bubble detached from a vertical

surface largely complicates theoretical analyses. As a

result, no comprehensive physical and mathematical

model describing characteristics of bubble growth

and detachment on the vertical surface has been

developed and validated.

The lattice-Boltzmann ¯ow-modeling approach,

which has been recently developed [9], recovers the

Navier-Stokes equations in the incompressible ¯ow

limit. Since the lattice-Boltzmann method can be

considered as a mesoscopic approach, lying between

microscopic molecular dynamics and conventional

macroscopic ¯uid dynamics, this method has been

found very useful in problems involving surface ten-

sion, capillarity and phase transition in multiphase

multicomponent systems [10].

Nomenclature

D bubble diameter, m
e, c lattice speed, m/s
f, n distribution function

F force, N
G interaction strength
g gravity acceleration, m/s2

m molecular weight of component
n particle distribution
P pressure, N/m2

Q ¯ow rate, m3/s
t time, s
u velocity, m/s
v gas velocity, m/s

x coordinates (x, y ), m

Greek symbols
b contact angle, degree
n kinematic viscosity, m2/s

r density, kg/m3

t relaxation time
c e�ective number density

s surface tension, N/m

Subscripts/superscripts

a index of discrete lattice velocity
b number of the discrete velocities
c critical value
eq equilibrium

g gravity
S number of phases
s index of phase, surface tension

t ¯uid±solid interaction
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In this work, the lattice-Boltzmann code FlowLab,
developed at the Division of Nuclear Power Safety,

Royal Institute of Technology [11], is employed for
simulation of bubble formation and detachment under
di�erent conditions. The static and the dynamic bubbly

regimes are investigated. The e�ects of gravity, surface
tension, inertial force and wettability on bubble
detachment size are analyzed. Since present capability

of the lattice-Boltzmann modeling in the FlowLab
code is limited to isothermal cases, we consider
no change of phase and related mass transfer in the

present study.

2. Formulation of the lattice-Boltzmann method

2.1. Basics of the lattice-Boltzmann method

The idea of the lattice-Boltzmann approach orig-

inates from the kinetic theory of gases, according to
which, the dynamics of ¯ow is described by an integro-
di�erential Boltzmann equation:

@ f

@ t
� u � rf �

X
�x, u, t� �1�

where f �x, u, t� is the density distribution function,

which represents a density of particles inside an in®ni-
tesimal phase space volume, DX � Dx iDui, of 6D
phase space �ui, x i, i � 1, 3). The right-hand side of the

Boltzmann equation (1) is a collision integral, which
describes the source/sink of particles (due to collision)
in the in®nitesimal volume DX: The simplest model for

the collision integral, which is valid in the case of
small deviation of system from the equilibrium state,
has the following form:X
�x, u, t� � ÿ1

t

ÿ
fÿ f eq

� �2�

where t is the relaxation (towards equilibrium) time.

The discrete-velocity-Boltzmann equation for multi-
component and multiphase ¯ow is derived from Eq.

(1) [12]:

nsa�x� ea, t� 1� ÿ nsa�x, t� � ÿ
1

ts

h
nsa�x, t� ÿ n

s�eq�
a �x, t�

i
�3�

where ns�eq�
a �x, t� is the equilibrium distribution at (x,

t ). Superscript s denotes the ¯uid component, s �
1, . . . ,S and subscript a denotes the lattice velocity
direction, a � 1, . . . ,b: It is instructive to note, that Eq.

(3) is normalized by the lattice spacing, Dx, and the
reference lattice speed, c � Dx=Dt:
The functional form for the equilibrium distribution

of a rectangular two-dimensional nine-speed (D2Q9)

model, shown in Fig. 1, is chosen as

n
s�eq�
0 �x� � t0n

s�x� �
�
1ÿ 3

2
u 2

�
�4�

n
s�eq�
a �x� � tin

s�x� �
�
1� 3ea � u� 3

2

ÿ
3eaea:uuÿ u 2

��
�5�

where ns �Pb
a�1 n

s
a , t0 � 4

9 (the rest population), t1 �
1
9 (population moving in diagonal directions) and t2 �
1
36 (population moving in non-diagonal directions).
In the above expressions, arbitrary constant d0 was

chosen as 1/3 [14].
Physical quantities of ¯ow, such as ¯uid density

rs�x, t� and ¯uid velocity us, can be obtained from:

rs�x, t� �
X
a

msnsa�x, t� �6�

rs�x, t�us�x, t� �
X
s

ms
X
a

nsa�x, t�ea �
X
a

Fs
a �7�

where ms is the molecular mass of the sth component,P
a Fs

a is the momentum contributed by total forces
acting on the sth component:X
a

Fs
a � Fs

g � Fs
s � Fs

t �8�

where Fs
g , Fs

s and Fs
t are momenta contributed by grav-

ity, interaction between phases, and interaction of ¯uid

with solid, respectively.
It was theoretically shown by Shan and Chen [12]

that the lattice-Boltzmann formulation, described

above, is an adequate model of macroscopic ¯ow of an
ideal ¯uid.

2.1.1. Interaction potential
In the present work, the interaction potential modelFig. 1. Lattice geometry and velocity vectors of D2Q9 model.
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of Shan and Chen [12], which simulates the hydrody-
namic interaction between two phases, is employed.

Fs
s � ÿtscs

XS
s 0

Gss 0
Xb
a�0

cs 0 �x� ea �ea �9�

where cs is a function of n�x� and plays the role of the
e�ective number density for component s: Gss 0 is the

interaction potential. Only short-range interactions are
represented in this model.
As shown in [13], with the above de®nition of the in-

teraction potential, the equation of state for D2Q9 lat-

tice-Boltzmann model can be written as

P � 1

2

"X
s

2

3
rs � 9

2

X
ss 0

Gss 0c
scs 0

#
�10�

where the ®rst term on the right-hand side is a kinetic
contribution, while the second term is a contribution
due to the inter-particle interaction. With interaction

potential properly chosen, any equation of state can be
modeled [13].

2.1.2. Fluid±solid interaction
The model, developed by Martys and Chen [14] to

describe the interaction between a ¯uid and a wall, is
implemented in the FlowLab code:

Fs
t � ÿtsns�x�

X
a

G s
t s�x� ea ��ea � �11�

where G s
t is the ¯uid±solid interaction potential par-

ameter, s � 0 or 1 for ¯uid or solid, respectively. By
adjusting the interaction strength G s

t (positive for non-

wetting ¯uid and negative for wetting ¯uid) for each
pair of ¯uid±solid interaction, we control the surface
wetting characteristic.

Applying the Chapman±Enskog expansion pro-
cedure to the lattice-Boltzmann equation(3), one
obtains the following mass and momentum equations
for the ¯uid mixture treated as a single ¯uid [13]:

@r
@ t
� rru � 0 �12�

@u

@ t
� uru � ÿrP

r
�

X
a

Fs
a

r
� nr 2u �13�

where r �PS
s�1 rs is the total density of the ¯uid

mixture, x j � r j=r is the mass fraction of the
component j.

In the lattice-Boltzmann method, only ¯uid density
is introduced directly. The kinematic viscosity of ¯uid
can be obtained from,

n � 2tÿ 1

6
�14�

where t is the relaxation time in the lattice-Boltzmann
equation. By choosing proper t, the viscosity of ¯uid
can be obtained.

2.2. Performance of the lattice-Boltzmann method for
two-phase ¯ow simulation

2.2.1. Boundary and initial conditions
It is easy to implement boundary conditions for the

lattice-Boltzmann method. Typically, in order to repro-
duce no-slip boundary conditions, populations of par-
ticles are re¯ected along their directions (`bounce-back'

conditions) in the lattice nodes, next to the boundary.
Exact position of the wall is unknown, but it is usually
set up to be in the middle of the boundary nodes and
their neighbors. One may also de®ne specular re¯ection

conditions that yield a slip condition. The simplicity of
such a formulation of boundary conditions makes the
lattice-Boltzmann method very attractive for simu-

lation of ¯ow with complex boundaries.
By employing such boundary and initial conditions,

since the lattice-Boltzmann equation (3) is explicit, the

lattice-Boltzmann method is found to be very stable in
the case that the March number of ¯uids is less than 1
and the relaxation time is larger than 0.5. It is con-

®rmed that the lattice-Boltzmann method has second
order of accuracy [15].

Fig. 2. E�ect of the nodalization on the density distribution

of gas phase across the interface, G = 0.05.
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2.2.2. Capability to simulate complex topology of two-
phase interfaces

In order to demonstrate the capability of the lattice-
Boltzmann method to capture interface of two-phase
¯ow, Shan and Chen [12] showed analytically that for

a case with ts � t the spin di�usivity, Z, is negative,
when Gss 0 > �tÿ 1=2�S=6, which indicates a separation
of components. Sehgal [11] performed a test of

agglomeration of two immiscible ¯uids on 50 � 50 lat-
tice with t � 1, r1=r2 � 4=6 and G � 0:5 > Gc � 1=24
[12]. Calculated results on the history of the com-

ponent's separation in [11] show that the lattice-Boltz-
mann method has remarkable capability to simulate
very complex topology of interfaces in dynamics with-
out any special treatment of the interfaces.

In the present paper, a test on the sharpness of inter-
face of two immiscible ¯uids in a physical domain with
a scale of 1� 1 and a static bubble size of 0.6 in radius

is performed. Three di�erent lattice (grid) represen-
tations, namely 50 � 50, 100 � 100 and 200 � 200, are
employed. The simulation results are shown in Fig. 2.

The upper pictures in Fig. 2 are the contours of den-
sity distribution of gas phase in the whole calculated
domain, and the lower one shows the density distri-

butions of gas phase along the central line in horizon-
tal direction (X direction) starting from the center
point of the static bubble to the right boundary of the
calculated domain (see the upper picture of Fig. 2). It

can be seen that the interface becomes sharper as the
lattice number increases. Notably, the density change
across the interface can be captured within three lat-

tices.

2.2.3. Evaluation of surface tension

The surface tension of ¯uid in two-phase ¯ow can

be evaluated from the interaction potential Gs [12]. In
the present work, two-dimensional circular bubbles are

generated in the center of the computational domain.
For speci®c model parameters chosen �ts, rs and Gs),
the ¯uid surface tension is calculated as a slope of

DPA1=R dependence. Fig. 3 presents a `measurement'
of the surface tension. As it shows, the Laplace law is
represented quite well by the lattice-Boltzmann

method.
Fig. 4 shows the simulation results of surface tension

for di�erent interaction potential parameters by the

lattice-Boltzmann method. In the calculation, the lat-
tice number is 51� 51. The dependence of surface ten-
sion on the interaction potential Gs is predicted nearly
linear in this model �s0Gs).

2.2.4. Evaluation of contact angle
The contact angle of bubble interface on a solid sur-

face depends not only on the ¯uid properties, but also
on the ¯uid±solid interaction. In a previous work [10],
it has been shown that the static contact angle b of

two phases in the pool can be reasonably well pre-
dicted by Eq. (11) [14]. By measuring the contact angle
b in the density distribution ®gure, obtained from the

lattice-Boltzmann simulation with the 41� 81 lattice, it
is found in the present work that the static contact
angle b is an inverse linear function of the ¯uid±solid
interaction parameter Gt (Fig. 5). In this case, densities

and the relaxation time are set to 1 for both ¯uids.
For Gt � 0, the solid surface is totally wettable by
both ¯uids. In contrast, a zero contact angle indicates

that the solid surface becomes unwettable by one of
the ¯uids. In general, a bigger contact angle is pre-
dicted for the ¯uid with larger surface tension coe�-

cient �s0Gs); see Fig. 5. Successful applications of the
FlowLab code and model to two-phase ¯ows, while

Fig. 4. Evaluation of surface tension for two-phase ¯ow.

Fig. 3. Total pressure di�erence inside and outside of a circu-

lar bubble as a function of its curvature. The slope is the sur-

face tension, ts � 1, rs � 1, Gs � 0:05 and 100� 100 lattice.
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accounting for surface tension and wettability, were
reported in Refs. [10,11].

3. Bubble growth and detachment on the horizontal

surface

Generally, when a bubble forms at the horizontal

solid surface, its growth characteristics and the
moment of detachment depend on both liquid±solid
interface condition (wettability e�ect) and the balance

of forces, which include gravity (body force), surface
tension, and inertial force of gas injection.
The most widely used correlation for the departure

diameter Dd of bubble on the horizontal surface is that

by Fritz [16] in which the bubble departure was deter-
mined by a balance between the buoyancy and surface
tension forces acting normal to the solid surface:

Dd � 0:0208b
� s
gDr

�1=2

�15�

Here, b is the contact angle in degrees, s is surface ten-
sion coe�cient, g is the gravity acceleration, Dr is the

density di�erence of two phases. Staniszewski [17]
measured the departure diameter over a range of press-
ures and observed an in¯uence of the bubble growth
rate on the departure diameter. He modi®ed the Fritz

equation to obtain the departure diameter correlation,

Dd � 0:0071b
�

2s
gDr

�1=2�
1� 34:3

@D

@ t

�
�16�

where @D=@ t is the bubble growth rate, which increases

with the gas ¯ow rate Q.
In the present work, gas is injected into a two-

dimensional liquid pool through a nozzle from the
pool bottom. The lattice-Boltzmann formulation is

dimensionless. The calculation domain is shown in
Fig. 6(a). The 45 � 90 lattice is employed in the two-
dimensional nine-speed lattice-Boltzmann model

(D2Q9). The periodic boundary condition is set at
both vertical sides. Non-slip bounceback boundary
condition is set at all liquid±solid interfaces. The e�ect

of gravity is modeled through a body force acting on
the bubble phase.
It should be noted that in practice bubbles are three-

dimensional subjects and bubble±liquid interface ex-
periences complex motion at di�erent wavelengths.
The present simulation is, however, limited to two-
dimensional formulation, neglecting any development

of three-dimensional interfacial structures and short
waves. It is based on observation of rather symmetrical
and quasi-static behavior of bubble during its growth

and departure from a nozzle on horizontal surfaces.
The situation is less apparent in case of vertical sur-
faces.

Thus, we assume that the 2D simulation is su�cient
to describe the bubble growth and detachment process
and we will utilize the bubble departure diameter as a

key parameter for evaluating the performance of the
lattice-Boltzmann modeling method employed here.
Interestingly, main parametric relations described in
Eqs. (15) and (16) for the bubble departure diameter

can analytically be derived by considering balance of
forces acting on a spherical bubble or two-dimensional
circular bubble. Although there is no data for circular

bubbles, similarity of forces acting on the spherical
bubbles and imaginary circular bubbles implies that
essential features of Eqs. (15) and (16) remain valid for

the circular bubbles.

3.1. E�ect of the body (gravity) force

Investigation of the e�ect of the body (gravity) force

Fig. 6. Calculation domain and schematic of bubble growth,

for the horizontal surface (a) and for the vertical surface (b).

Fig. 5. Evaluation of contact angle of two-phase ¯ow in a

pool.
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on the bubble growth and detachment has recently
received signi®cant attention owing to the emerging

interest in boiling heat transfer in microgravity con-
ditions. In the literature, it was established that the
bubble's departure diameter is proportional to the

inverse square root of the gravitational acceleration
coe�cient D0gÿ1=2 (see Eqs. (15) and (16)). However,
most of the related experiments were terrestrial. It is

therefore of interest to evaluate this dependence for a
large variation range of the gravity coe�cient. Fig. 7
depicts lattice-Boltzmann simulation results. The

bubble's departure diameter calculated for di�erent
gravity forces was ®t into a function of D0gÿ0:514:
This result is in very good agreement with the previous
theoretical and experimental correlations. Notably, at

low gravity conditions, very large departure diameters
were predicted. This situation was known to result in
an earlier horizontal bubble coalescence and boiling

regime transition (boiling crisis). It should also be
noted that at low gravity conditions, the role of sur-
face tension and wettability on the bubble departure

diameter increases.
Figs. 8 and 9 show essentially similar behavior of

bubble growth calculated for two di�erent body forces.

3.2. E�ect of the surface tension

Fig. 10 depicts results of lattice-Boltzmann simu-

lations for di�erent values of the surface tension coe�-
cient. A regressional function of the calculated
bubble's departure diameter depending on the ¯uid±

¯uid interaction potential has the form: D0G 1=2
s :

Recalling results presented in Fig. 4 about the linear
relation between the surface tension coe�cient s and

the ¯uid±¯uid interaction potential Gs, it can be con-

cluded that the lattice-Boltzmann method employed is
able to predict the well-known relation D0s1=2: The
bubble departure diameter is thus smaller at elevated
pressures since the surface tension is associated with
the density gradient over the interface of contacting

¯uids.

3.3. E�ect of the ¯uid wettability

The ¯uid wettability on a solid surface is a nano-
scopic phenomenon, which has usually been quanti®ed,

macroscopically, in terms of static contact angle at the
triple ¯uid±¯uid±solid joining point. In the lattice-
Boltzmann modeling, the wettability is implemented
through the ¯uid-solid interaction potential Gt. Fig. 11

shows the linear dependence of the bubble's departure
diameter on the ¯uid±solid interaction potential,
D0Gt: Taking into account the calculated results pre-

sented in Fig. 5, it can be concluded that the lattice-
Boltzmann method is able to describe the linear re-
lation between the bubble departure diameter and the

static contact angle as previously established in exper-
iments �D0b).

Fig. 8. History of bubble growth and detachment for rela-

tively low body (gravity) force, Gs � 0:06, g � 0:001,
Q � 0:125, Gt � 0:005:

Fig. 7. The body (gravity) force e�ect on bubble departure di-

ameter, Gs � 0:06, Gt � 0:005, v � 0:1:
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It is interesting to note that in a nanoscopic neigh-
bourhood around the triple point, the contact angle

may well be static. However, with respect to the length

scale of the simulation grid size and of currently visu-
alized observations, the contact angle b should, likely,
be treated as dynamic due to the e�ect of the interface

inertia on the force balance at the triple point. In cer-
tain practical situations, the bubble growth dynamics
may be su�cient to necessitate the consideration of the

dynamic contact angle. On one hand, such an e�ect
becomes important when the bubble size approaches
its departure condition. On the other hand, the bubble
growth rate decreases when the bubble volume

increases and approaches its departure limit. It is
therefore of interest to evaluate the e�ect of gas ¯ow
rate Q on the bubble's departure characteristic.

Fig. 9. History of bubble growth and detachment for rela-

tively high body (gravity) force, Gs � 0:06, g � 0:01,
Q � 0:156, Gt � 0:005:

Fig. 10. Surface tension e�ect on bubble departure diameter,

g � 0:01, v � 0:1, Gt � 0:005:

Fig. 11. Wettability e�ect on bubble departure diameter,

g � 0:01, v � 0:1, Gs � 0:06:

Fig. 12. Flow rate e�ect on bubble departure diameter for

relatively low body (gravity) force, Gs � 0:06, g � 0:001,
Gt � 0:005:
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3.4. E�ect of gas ¯ow rate

Figs. 12 and 13 show the bubble departure diameter
calculated for two values �g � 0:001 and 0.01) of body
force. The dependence of the departure diameter on

the ¯ow rate Q can be seen in both cases. In the inter-
mediate range (Q = 0.1±0.2), the e�ect of the gas ¯ow
rate (Q = 0.1±0.2) on the bubble departure diameter

is profound and can be evaluated, approximately, as
D0Q1=3 or D0@D=@ t: This is in reasonably good
agreement with experimental data obtained in the past

on bubble departure diameter in a large range of gas
injection rates. On one hand, it can be stated that such
a dependence re¯ects the correction required for the
contact angle under the in¯uence of bubble growth

inertia. On the other hand, it may simply indicate the
need to consider the dynamic e�ect of the fast bubble
growth on the force balance at the time of the bubble's

departure.
As it was noted in Section 1, the present study

focuses on the dynamic bubbling regime. However, it

might be interesting to make a few notes on results
obtained for high and low gas ¯ow rates (turbulent
and static bubbling regimes). It was predicted that at

both very low and very high gas ¯ow rates, the bubble
departure diameter appears to feature another depen-
dence on the gas ¯ow rate. At high gas ¯ow rates, the
gas injection regime may well be in jet mode, when

surface tension governs the stability and breakup of
the jet stream. Therefore, the bubble departure diam-
eter remains constant for a range of the gas ¯ow rate.

At small gas ¯ow rates, the bubble's growth inertia
can be considered as negligible. However, the depen-
dence of the bubble departure diameter on the gas

¯ow rate was found to di�er for di�erent values of
body force ( g = 0.001 and 0.01). If the static bubbling

regime at di�erent gravity conditions would be of
interest, a detailed simulation study and comparison to
experimental data, in this regime, could be desirable.

4. Bubble growth and detachment on the vertical surface

Interest in the phenomena of bubble growth and
detachment on vertical surfaces is largely related to

understanding of nucleate boiling and boiling regime
transitions. The latter processes are important in many
technologies, involving cooling of heated surfaces by a
volatile liquid. The bubble growth and detachment

have, therefore, been investigated in the context of
nucleation and coalescence of vapor bubbles in both
pool and ¯ow boiling regimes. The authors are, how-

ever, unaware of any separate e�ect study, in which
the isothermal processes of bubble growth and detach-
ment on vertical surfaces were investigated in depth. It

remains unclear that how, and to what extent, the
di�erent forces acting on the gas bubble alter the beha-

Fig. 14. History of growth and detachment of bubble on a

vertical surface, Gs � 0:06, g � 0:01, Q � 0:21, Gt � 0:01:

Fig. 13. Flow rate e�ect on bubble departure diameter under

relatively high body (gravity) force, Gs � 0:06, g � 0:01,
Gt � 0:005:
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vior and characteristics of the bubble growth and
detachment on the vertical surfaces, compared to that
of the bubbles on the horizontal surfaces.
In the present study, a 70 � 65 lattice is employed

for the computational domain as shown in Fig. 6(b).
Periodic boundary conditions are provided for the
upper and lower boundaries of the domain. The non-

slip condition is assumed on both side vertical bound-
aries (walls). The FlowLab code is employed for simu-
lation. Qualitative results of the lattice-Boltzmann

simulation are depicted in Fig. 14. It can be seen that
the bubble growth, detachment and rising on the verti-
cal surface are di�erent from those on the horizontal
surfaces. In particular, the bubble shape is not circular

(spherical). Actually, the process is asymmetric with

respect to the bubble itself. The symmetric circular

shape of the bubble simulated is achieved only when it
has moved up far enough from the detachment lo-
cation.

Quantitatively, results of lattice-Boltzmann simu-
lation of the bubble growth and detachment are ana-
lyzed in terms of the bubble departure diameter. The

e�ect of the body force (gravity), surface tension, wet-
tability and gas ¯ow rate was numerically investigated.
Figs. 15±18 show the dependencies of the bubble

departure diameter on the physical parameters and
properties chosen.
It can be seen from Fig. 15 that the body force

(gravity) imposes a signi®cant e�ect on the bubble

departure diameter, D0gÿ0:57: The power index 0.57

Fig. 15. The body force (gravity) e�ect on bubble departure

diameter, Gs � 0:06, Gt � 0:008, v � 0:1:

Fig. 16. Surface tension e�ect on bubble departure diameter,

g � 0:01, v � 0:1, Gt � 0:006:

Fig. 17. Wettability e�ect on bubble departure diameter,

g � 0:01, v � 0:1, Gs � 0:06:

Fig. 18. Flow rate e�ect on bubble departure diameter,

Gs � 0:06, g � 0:01, Gt � 0:01:
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resulted from a regression analysis is higher than the
power index of 0.514, which was obtained for the

departure diameter of the bubble on the horizontal
surface.
Fig. 16 shows a linear dependence of the bubble's

departure diameter on the surface tension coe�cient,
D0Gs0s: Such a dependence is stronger than that
observed and predicted for the bubble's departure di-

ameter on the horizontal surfaces �D0G 1=2
s 0s1=2). It

is perhaps, related to the e�ect of surface tension in
the neck region of the bubble interface near the

detachment location. This force acts either perpendicu-
lar or parallel to the direction of the bubble moving
from horizontal or vertical surfaces, respectively.
Fig. 17 shows the e�ect of wettability on the

bubble's departure diameter for the vertical surface
case. It was found that when both ¯uids feature good
wettability characteristics, the bubble's departure diam-

eter is not a�ected by the wettability. However, when
the bubble phase becomes less wettable, the bubble's
departure diameter is predicted to decrease as it was

also observed in the case of bubble departure from the
horizontal surfaces.
Fig. 18 shows the e�ect of gas ¯ow rate on the

bubble's departure diameter. Interestingly, no satu-
ration regime was predicted at both low and high gas
¯ow rates, indicating speci®city of the horizontal injec-
tion of gas through a nozzle on the vertical surface.

Finally, it should be noted that analytical modeling
of the bubble departure on the vertical surface is di�-
cult due to the bubble's asymmetry. The above results

of lattice-Boltzmann simulation have yet to be veri®ed
against experimental data. Nonetheless, the dependen-
cies predicted by lattice-Boltzmann simulation provide

useful insight in developing understanding and an
appropriate analytical model.

5. Conclusions

In the present work, the FlowLab code, based on
the D2Q9 lattice-Boltzmann model for two-phase ¯ow

is employed to simulate the behavior of bubble growth
and detachment from a nozzle on the horizontal and
vertical surfaces.
To enable studying separate e�ects in the bubble

growth and detachment phenomena, conditions were
chosen to cope with the current limitations of the lat-
tice-Boltzmann technique in handling ¯uid pairs with

signi®cant di�erences in physical properties. It was
found that the approach provides a realistic picture of
the bubble behavior. More importantly, analysis of the

lattice-Boltzmann simulation results revealed that the
major parametric dependencies of the bubble's depar-
ture diameter on various physical parameters (body

force, gas generation rate) and physical properties (sur-
face tension, wettability) are correctly predicted. In

particular, the lattice-Boltzmann simulation results
were found to be in excellent agreement with exper-
imentally established dependencies of the departure di-

ameter of bubbles on the horizontal surfaces. The
simulation results obtained for bubbles on vertical sur-
faces also provide useful insights into the phenomena

of bubble growth and detachment.
It should be noted that the present work was per-

formed to explore the capabilities and limitations of

the lattice-Boltzmann method, in general, and the
FlowLab code, in particular, for multiphase-¯ow mod-
eling. The optimistic results of the present study serve
as the starting point for continued studies on bubble

coalescence and boiling regime transitions through the
lattice-Boltzmann method.
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